
1.  Introduction
Antarctica’s floating ice shelves have a substantial effect on the rate of dynamic ice loss from the grounded 
Antarctic Ice Sheet (e.g., Thomas, 1979). For most ice shelves, a decrease in their mass reduces back stresses 
acting on the upstream glaciers and ice streams, resulting in acceleration of grounded ice into the ocean 
(e.g., Gudmundsson et al., 2019; Scambos et al., 2004; Smith, Fricker, Gardner, Medley, et al., 2020) and 
global sea-level rise (Nerem et al., 2018; Shepherd et al., 2018). In steady state, mass loss from an ice shelf, 
through basal melting and iceberg calving, balances inflow of grounded ice across the grounding line and 
net precipitation onto the ice shelf. In recent decades, however, ice-shelf mass losses integrated around 
Antarctica have exceeded gains (e.g., Adusumilli et al., 2020; Depoorter et al., 2013; Rignot et al., 2013).

For the largest ice shelves (Ross (Figure 1a), Filchner-Ronne, and Amery), which are underlain by cold 
water and currently near steady state, multidecadal mean mass loss through iceberg production is estimat-
ed to exceed loss through basal melting (Depoorter et al., 2013; Rignot et al., 2013). The calving flux for 
these ice shelves is dominated by intermittent production of large (tens of kilometers long) tabular icebergs 
every few decades (e.g., Fricker et al., 2002; Lazzara et al., 1999; Walker et al., 2021). The extent and timing 
of these calving events are controlled by the lateral extension of full-thickness rifts to the ice front. This 
process is usually treated as essentially glaciological, governed by ice-shelf stress balances (e.g., Joughin & 

Abstract Mass loss from Antarctica’s three largest ice shelves is dominated by calving, primarily 
of large tabular icebergs every few decades. Smaller, more frequent calving events also occur, but it is 
more difficult to detect them and quantify their contribution to total ice-shelf mass loss. We used surface 
elevation data from NASA’s ICESat-2 laser altimeter to examine the structure of the Ross Ice Shelf front 
between October 2018 and July 2020. Profiles frequently show a depression a few meters deep about 
200–800 m upstream of the front, with higher values on the eastern portion of the ice shelf. This structure 
results from bending due to buoyancy of a submerged ice bench generated by ice-front melting near the 
waterline when warm water is present in summer. These bending stresses may cause small-scale calving 
events whose frequency would change as summer sea ice and atmosphere–ocean heat exchanges vary 
over time.

Plain Language Summary Mass loss from Antarctica’s floating ice shelves, which form 
as the ice sheet extends into the Southern Ocean, influences how quickly grounded ice flows into the 
ocean. Estimating future sea-level change from grounded-ice loss therefore requires understanding, and 
developing models for, the processes that affect ice shelves. We used measurements of surface height from 
NASA’s recently launched ICESat-2 mission to explore one such process, the calving of small icebergs due 
to upper-ocean melting of the ice front. We focus on the large Ross Ice Shelf. This local melting leads to 
bending of the ice shelf that can be seen in ICESat-2 profiles that cross the ice front. The bending may also 
fracture the ice shelf to create small icebergs. We found that these surface structures are generally larger 
on the eastern portion of Ross Ice Shelf than on the western portion. We suggest that this pattern is due 
to differences in ice, ocean, and sea ice conditions that promote or impede the melting responsible for 
the ice-shelf bending. ICESat-2 will allow us to monitor changes in these small-scale structures and any 
associated calving events, which will provide clues about how ice shelves will change in the future.
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MacAyeal, 2005), with the ocean making only an indirect contribution through ice-shelf thinning by melt-
ing (Liu et al., 2015) and possible contributions from tides, swell, and tsunamis (e.g., Bromirski et al., 2010; 
Brunt et al., 2011; MacAyeal et al., 2006). However, some mass loss can be driven directly by ice–ocean 
interactions at the front, including the more frequent production of relatively small “sliver-shaped” icebergs 
(described by Kristensen (1983) as <2 km long and having at least one horizontal dimension on the order 
of the ice thickness).

One potential small-scale calving mechanism involves the development of a buoyant subsurface ice “bench” 
(hatched area in Figure 1b) as warm near-surface water and surface-wave action cause the aerial portion of 
the ice front to collapse (e.g., Hughes, 2002; Orheim, 1987). The additional buoyancy bends the seaward ice 
edge upward, generating a surface “rampart” at the front and a depression (or “moat”) upstream (Mosbeux 
et al., 2020; Scambos et al., 2005). The elevation difference (dhRM) and horizontal distance (dxRM) between 
the rampart and the center of the moat are, typically, a few meters and a few times the ice thickness (H), 
respectively (Scambos et al., 2005). Rampart-moat (R-M) structures have been observed at the edges of tab-
ular icebergs as they drift into warmer upper-ocean water (Scambos et al., 2005, 2008; Wagner et al., 2014) 
and along the Ross Ice Shelf (RIS) front (Horgan et al., 2011; Mosbeux et al., 2020) where near-surface water 
warms in summer (Porter et al., 2019).

Mosbeux et al. (2020) applied an ice-shelf model to an idealized, constant-thickness ice shelf to quantify its 
flexural response to the buoyancy of the bench. An increase in buoyancy increases the associated internal 
ice stresses, which can lead to propagation of basal crevasses. If the stresses reach a critical value, the ice 
shelf will calve a relatively small, but full-thickness, iceberg along the crevasse. After the calving event, the 
new ice front will again be roughly vertical, with no bench. In that state, the dominant bending moment 
results from the difference in pressure between the ice shelf and the ocean along the ice front, which bends 
the upper edge seaward and downward (Reeh, 1968) by several meters to create a “berm” shape (Scambos 
et al., 2005). Berm structures are frequently found along ice fronts (e.g., Robin, 1979), where they can be re-
inforced by elevated rates of “mode-3” basal melting near the front (Horgan et al., 2011; Jacobs et al., 1992).

Until recently, we have lacked the ability to map surface elevation of Antarctica’s extensive ice fronts at suf-
ficiently high spatial resolution to fully resolve R-M structures. The 2018 launch of NASA’s Ice, Cloud, and 
land Elevation Satellite-2 (ICESat-2) provides the first opportunity to overcome this observational limita-
tion. Here, we demonstrate that ICESat-2 resolves R-M structures, map their presence along most of the RIS 
front, and examine along-front variability of R-M spatial scales. We then discuss potential environmental 
drivers and implications of this process as ocean conditions change.

2.  ICESat-2 Over the RIS Front
2.1.  ICESat-2 Mission

ICESat-2 was launched in September 2018 and began collecting scientific data in October 2018. The satellite 
carries the Advanced Topographic Laser Altimeter System (ATLAS), a photon-counting laser altimeter that 
transmits green (532 nm wavelength) light split into three pairs of beams (Markus et al., 2017). Each pair 
consists of a strong beam and a weak beam separated by 90 m; pairs are separated by 3.3 km on the ground 
during nominal performance. ATLAS pulses at 10  kHz, illuminating ∼10.6–12  m footprints (Magruder 
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Figure 1.  (a) Map showing the distribution of Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) reference ground tracks (RGTs) near the Ross Ice Shelf (RIS) 
front (ascending in red and descending in blue) overlaid on a December 2, 2018, Moderate Resolution Imaging Spectroradiometer (MODIS) image downloaded 
from NASA Worldview. The Depoorter et al. (2013) ice-shelf mask is shown with a black line. Gray lines on the ice shelf show modern ice streamlines derived 
from Rignot et al. (2017) velocity fields, with the streamline delineating the boundary between ice originating from the West and East Antarctic ice sheets 
(WAIS and EAIS, respectively) in thicker black. Inset map (created using Antarctic Mapping Tools data; Greene et al., 2017) features the Mouginot et al. (2017) 
WAIS–EAIS boundary. (b) Schematic of ice-shelf bench (hatched area), R-M structure, and the conditions under which the bench forms. Three relevant R-M 
parameters, relative height (dhRM), relative along-track distance (dxRM), and near-front thickness (H), are indicated. (c) Height above instantaneous sea surface 
for Cycle 7 ICESat-2 ATL03 signal (light blue dots) and background (gray dots) photons, and ATL06 segments (dark blue dots) for gt3r (strong beam) for RGT 
0487, which is labeled in (a). ATL06-derived rampart and moat locations are marked as red crosses. (d) ATL06 height above instantaneous sea surface for all 
beams for Cycle 7 repeats of, from east to west along the front, RGTs 1371 (June 24, 2020), 0724 (May 12, 2020), 0487 (April 27, 2020), and 0785 (May 16, 2020). 
Dashed lines connect the ice-shelf (left) side of the profiles to the ocean (right) side but do not represent real ATL06 data. The four RGTs shown in (d) are 
indicated in (a) by thicker lines compared to the other RGTs.
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et al., 2020) every ∼0.7 m along each of the six ground tracks (GTs). GTs are nominally centered on 1,387 
reference ground tracks (RGTs), which extend to a latitude of 88° and are repeated once per 91-day cycle. 
ICESat-2 was off-pointed 1–4 km from its RGTs for the first two cycles (Smith, Fricker, Gardner, Medley, 
et al., 2020) but has been exactly following its RGTs over the polar regions since April 1, 2019.

2.2.  Height Data

We used the ICESat-2 ATL06 Land Ice Height product (Smith et al., 2019), which provides estimated heights 
(relative to the WGS84 ellipsoid) derived from 40 m along-track data segments that overlap by 50%, yielding 
20 m spacing. Over flat parts of the Antarctic Ice Sheet, ATL06 data have accuracy and precision of <3 cm 
and <9 cm, respectively (Brunt et al., 2019). We used data from all six GTs per RGT. We examined Release 
003 ATL06 data (Smith, Fricker, Gardner, Siegfried, et al., 2020) across the RIS front region from Cycle 1 to 
midway through Cycle 8 (July 16, 2020). We used the Python icepyx library (Scheick et al., 2019) to down-
load a spatially subsetted data set of ATL06 files from the National Snow and Ice Data Center (NSIDC). The 
bounding box we applied, which spanned 77°S to 78.9°S and 163.5°E to 157.5°W, encompasses the entire 
RIS front.

For specific GTs, we also retrieved ATL03 Global Geolocated Photon Data files (Neumann et al., 2019) that 
provide estimates for latitude, longitude, and height relative to the WGS84 ellipsoid for all photons detected 
by ATLAS. We downloaded these profiles from NSIDC (Neumann et al., 2020) and used them to assess how 
well the ATL06 product resolves R-M structures (Section 3.1).

2.3.  Ice-Front and R-M Detection

We automated detection of the ice front, R-M structures, and measurements of R-M spatial scales from 
ATL06 data using the following analysis steps:

1.  GT selection: We used an ice-shelf mask (Depoorter et al., 2013) to select GTs that crossed the RIS front 
between Marie Byrd Land and the eastern tip of Ross Island (Figure 1a).

2.  GT filtering: We removed GT segments with known data-quality issues, keeping only data for which the 
atl06_quality_summary flag equals 0.

3.  Height referencing and correction: We converted all ellipsoidal height data (h_li) to height relative to the 
instantaneous sea surface by referencing them to the EGM2008 geoid (geoid_h, provided in the ATL06 
product) and correcting for ocean tides (tide_ocean), inverted barometer effects (dac), and mean dynam-
ic topography (mdt), using hss = h_li  geoid_h  tide_ocean  dac  mdt. We obtained the values for 
tide_ocean and dac from the GOT4.8 model and MOG2D dynamic atmosphere correction values provid-
ed in the ATL06 product; we applied a constant value of 1.4 m for mdt (Andersen et al., 2015). We then 
removed outliers (hss < 5 m or hss > 100 m).

4.  Front detection: Our front-detection algorithm scans GT profiles from the ocean to the ice shelf. We inter-
preted segments with hss < 2 m as the ocean surface; we selected this threshold to allow for the presence 
of snow-covered sea ice and uncertainties in the geophysical corrections. For each GT, the algorithm 
steps landward from the most seaward ocean point until it detects a height increase of 10–100 m over less 
than 80 m distance along track, where the starting point of the jump is an ocean point. The algorithm 
identifies the ice front as the location of the first point on the high side of the jump. It occasionally lo-
cated the ice front at the northern edges of small icebergs in the Ross Sea, in regions of near-front rifting 
(e.g., seaward of Roosevelt Island), and on the ice shelf when ATL06 data are missing over the true ice 
front and the surface within a rift has hss < 2 m. We manually removed tracks where the detected ice 
front was clearly inconsistent with the full data set and nearly contemporaneous MODIS imagery.

5.  R-M detection: For all ice-front segments, we defined the rampart surface height (hR) as the highest point 
within 100 m of the front. This was usually the first ATL06 value on the ice shelf; however, sometimes 
the ice front in the ATL06 profile included one or more lower points resulting from the overlapping aver-
aged segments or true structure on the aerial portion of the ice face. Moving landward, we then searched 
in the GT profile for elevations lower than hR that were less than 2 km (along track) from the front; this 
threshold is based on the expected location of moats within a few ice thicknesses of the front (Mosbeux 
et al., 2020; Scambos et al., 2005) and the orientation of RGTs being roughly orthogonal to the front for 
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RIS (Figure 1a). If successful, we recorded the lowest point of the first detected depression as the moat 
with height hM.

6.  R-M quantification: For each GT profile that showed an R-M structure, we computed two parameters 
to define its geometry: dhRM (= hR hM) and dxRM as the difference in height and along-track distance, 
respectively, between the rampart and the center of the moat (Figures 1b–1c).

2.4.  Estimation of Ice Thickness

We estimated ice thickness (H) from ATL06-derived values of hss ∼3  km upstream (along track) of the 
rampart, which for almost all RGTs used in this study (Figure 1a) is upstream of the expected zone of R-M 
flexure (Mosbeux et al., 2020; Figures 1b–1d). We converted hss to ice-equivalent thickness (Heq) by assum-
ing hydrostatic equilibrium, ice density of 917 kg m−3, seawater density of 1028 kg m−3, and firn air content 
(Hfac) derived from GSFC-FDM v1 simulations (updated from those performed in Smith, Fricker, Gardner, 
Medley, et al., 2020). We then computed H as the sum of Heq and Hfac.

3.  Results
In our region of interest, there were 8,191 GTs that crossed the RIS front. We were unable to identify the 
ice front for 3,953 of these. Clouds (identified with the ATL06 cloud_flg_atm parameter) were responsible 
for most (3,726) of the failed front detections, whereas our algorithm could not detect the front in 227 GT 
profiles. Of the 4,238 GT profiles with detected fronts, 348 occurred seaward of Roosevelt Island or on ice-
bergs in the Ross Sea. We detected R-M structures (step 5 above) along 2,893 of the remaining 3,890 profiles 
(∼74%). Thus, 997 (∼26%) of these GT profiles exhibit a monotonically increasing surface profile, or berm 
structure, within 2 km of the detected front; this arises from a combination of pressure imbalance at the ice 
front, mode-3 basal melting, and ice spreading. We report only the results of step 5 for the GT profiles for 
which we could compute a physical H, that is, that also contained high-quality data outside of rifts ∼3 km 
upstream of the detected rampart. There were 2,826 GT profiles (∼73% of the 3,890 profiles described above) 
for 221 RGTs that satisfied this criterion.

3.1.  ICESat-2 Resolution of Rampart-Moat Structures

The profiles of ATL03 signal photons (see example in Figure 1c) reveal the ice front and R-M structures; 
however, quantifying surface heights and rampart and moat locations requires assumptions about the 
near-surface photon distribution and consideration of uncertainties in geolocation of individual photons. 
The ATL06 algorithm applies additional photon filters, instrumental corrections, and photon scattering 
statistics to retrieve ice-surface height from geolocated photons (Smith et al., 2019). This allows us to iden-
tify the along-track locations of the rampart and moat to an accuracy of 20 m and quantify the vertical 
and horizontal scales of the R-M structure, with minimal reduction in dhRM relative to the value we would 
obtain from ATL03 signal photons. We conclude that ATL06 is well suited to our application of analyzing 
R-M structures.

3.2.  Along-Front Variability of Rampart-Moat Characteristics

The multi-beam sampling and RGT spacing of ICESat-2 over RIS provide along-front sampling of ∼1–3 km 
during a single cycle (Figure 1d). Derived R-M parameters are consistent between the weak and strong 
beam GT profiles that are 90 m apart; however, we sometimes observed large variability between beam pairs 
(3.3 km apart) for the same RGT and between RGTs. For example, for the Cycle 7 repeat of RGT 0487, beams 
gt3l (weak) and gt3r (strong) showed an R-M structure with dhRM  9.5 m, whereas the other two beam pairs 
(∼3.3 and ∼6.6 km away) showed R-M structures with dhRM  1–2 m.

We evaluated the statistics of dhRM and dxRM for all available ICESat-2 cycles for seven regions along the 
ice front (Figure 2a), chosen to approximate the regions used by Horgan et al. (2011) in their estimation 
of mode-3 basal melt rates but adjusted to match pronounced streaklines representing major suture zones 
between distinct ice flow units. Broadly speaking, the values of both dhRM and dxRM (Figures 2b–2e) are 
larger on the eastern portion of the front (regions 1–4) than on the western portion (regions 5–7). On the 
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Figure 2.  (a) Colored dots show along-front distribution of dhRM (see Figure 1b for definition) from the 2,826 ICESat-2 ATL06 ground track (GT) profiles for 
which we could identify an R-M structure on the RIS front and compute ice thickness (H), overlaid on a hill-shaded version of the Reference Elevation Model of 
Antarctica (REMA) mosaic (Howat et al., 2019). GT profiles are for all ICESat-2 cycles (October 2018 to July 2020) available at the time of writing. Dashed black 
lines across the front indicate boundaries of seven regions used in regional statistical analysis of R-M parameters. Ice-shelf mask and streamline dividing WAIS 
from EAIS shelf ice are as in Figure 1a. (b) Relative frequency histograms of dhRM (top row) and dxRM (bottom row) for each region defined in (a) and for the 
entire front ("All"; rightmost column). Dashed vertical lines indicate mean values for each region. Region numbers and numbers of profiles with R-M structures 
per region (n) are above each column. Arrows at top of (b) specify the eastern (regions 1–4) and western (regions 5–7) portions of the front; numbers of R-M 
structures and berm-type profiles observed in each portion are indicated. Lower panels provide scatterplots of (c) dhRM versus H, (d) dxRM versus H, and (e) dhRM 
versus dxRM for all 2,826 GT profiles, color coded red (blue) if they occurred on the eastern (western) portion of the front.
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eastern portion, regional histograms of dhRM mostly have peaks and average values greater than 5 m; on the 
western portion of the front, peaks and averages are typically at values of dhRM below 5 m. There is a similar 
divide in the distribution of dxRM. Whereas most of the GT profiles that cross the eastern RIS front have dxRM 
values between 300 and 500 m, GT profiles across the western RIS front mostly have values between 100 and 
300 m, resulting in lower regional averages.

We found no evidence of significant changes in R-M statistical characteristics over the October 2018–July 
2020 ICESat-2 record. Instead, we interpret the variability of R-M characteristics on scales of a few km along 
the front (Figure 1d) as evidence that the buoyancy of the bench varies on similar length scales. If so, the 
spread of dhRM values within a region probably represents the different stages in the life cycles of the R-M 
structures. Although R-M structures are typically larger in both dhRM and dxRM on the eastern portion of the 
front, there are R-M structures with small dhRM in all seven regions. Berm structures also occur along the 
RIS front, but our results suggest that they are more prevalent on the eastern portion of the front (∼30% of 
all GTs) than on the western portion (∼22%) (Figure 2b).

4.  Discussion
4.1.  Drivers of Spatial Patterns in Ice-Front Shape

Prior modeling studies of R-M structures suggest that their spatial scales are determined by ice thickness 
and ocean properties, and we discuss each of these below.

1.  Ice thickness (H): We expect from modeling (Mosbeux et al., 2020) that the characteristics of R-M struc-
tures depend on H near the ice front (Figures 2c–2d and 3). The observed values of dhRM and dxRM along 
the RIS front suggest that the distribution of both parameters is at least partially related to H. Near-front 
H is influenced by mode-3 basal melting (Horgan et al., 2011) and by ice advection, with ice on the east-
ern portion of RIS (fed by the West Antarctic Ice Sheet) being generally thicker than ice on the western 
portion of RIS (fed by the East Antarctic Ice Sheet).
 We hypothesize that the relationship between R-M spatial scales and H occurs because a submerged 
bench of a specified length along the thicker eastern portion of the RIS front will occupy a greater vol-
ume than a bench of the same length along the thinner western portion of the RIS front. Assuming ice 
and ocean density do not vary significantly, this greater volume increases the upward bending moment 
imparted by the buoyant bench (Figure 1b), which in turn increases dhRM. We expect that dxRM will also 
be greater for thicker benches, as the bending stiffness of the ice shelf increases with H (e.g., Mosbeux 
et al., 2020; Wagner et al., 2014). However, the volume of the buoyant bench also has a second-order 
control on dxRM. The positions of the maximum tensile stress and the moat migrate seaward as the bench 
grows, converging to a value fixed by the mechanical stiffness of the ice shelf (Mosbeux et al., 2020). 
Thus, we require additional information about the geometry of the bench to fully characterize the rela-
tionship between H and dxRM. The evolution of both dhRM and dxRM may also be related to local rheology 
and the profile of ice and firn density, as well as preexisting topography associated with rifts (Walker 
et al., 2021).

2.  Ocean properties: The principal ocean drivers of bench development are near-surface ocean temperature 
and surface waves (Kristensen et al., 1982; Scambos et al., 2008). For the southern Ross Sea, measured 
upper-ocean temperatures are significantly above the freezing point only in summer when sea ice has 
disappeared (Porter et al., 2019). No direct measurements of surface waves are available along the RIS 
front, but we expect them to be generally small because sea ice effectively dampens surface waves propa-
gating southward (Horvat et al., 2020), and near-front waves generated by the prevailing northward wind 
stress across the ice front (Tinto et al., 2019) will be small.

The southern Ross Sea is typically free of sea ice in summer, as the Ross Sea Polynya (Figure 3) expands 
northward from the ice front beginning in December. The observed mean summertime (December–Febru-
ary) 15% sea ice concentration contour for 1999–2019 (Figure 3), derived from monthly passive microwave 
data (Meier et al., 2017; Peng et al., 2013), is about 100 km north of the eastern ice front and extends sev-
eral hundred km farther north in the western Ross Sea. The mean summertime sea surface temperature 
(SST) from monthly averaged outputs from the fifth generation of the European Centre for Medium-Range 
Weather Forecasts (ECMWF) Re-Analysis (ERA5; Hersbach et al., 2019) for the same period shows warmer 
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surface water in the western Ross Sea ∼100 km north of the RIS front (Figure 3), but it does not show the 
relatively warm SSTs close to the front reported by Porter et al. (2019).

These sea ice concentration and SST products suggest that, contrary to our observations (Figure 2), near-
front summer ocean and sea ice conditions in the western Ross Sea are more conducive to development of a 
buoyant bench and R-M growth than in the eastern Ross Sea. We speculate that small-scale ocean processes 
near the ice front in the eastern Ross Sea lead to development of a more appropriate temperature profile for 
bench formation (with most ocean heat remaining very close to the ocean surface) than in the western por-
tion, where downwelling of ocean heat, strong mode-3 basal melting (Stewart et al., 2019; Tinto et al., 2019), 
and mode-3-associated production of cold and fresh meltwater (Malyarenko et al., 2019) might impede the 
growth of a buoyant bench.
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Figure 3.  Potential drivers of observed patterns in R-M geometry. Background (hill-shaded REMA mosaic from Howat et al., 2019) shows streaklines 
delineating ice flow of different glacial units on RIS. The mean summertime SST for the period 1999/2000 to 2018/2019 from Hersbach et al. (2019), 
extrapolated to meet the RIS front, is shown by blue–red shading. Thick gray line shows the mean summertime 15% sea ice concentration contour (Meier 
et al., 2017; Peng et al., 2013) for the same period. Ice-shelf thickness (H) 3 km upstream (along track) from the ice front is indicated by the colored dots. Region 
boundaries are as in Figure 2; ice-shelf mask and streamline dividing WAIS from EAIS shelf ice are as in Figure 1a. The inset table shows mean values of dhRM, 
dxRM, and H for each region and for the full front (“All”).
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4.2.  Implications for Calving

The tensile stress associated with bench-driven bending of the ice shelf, although generally much smaller 
than the yield stress of pure ice (∼1 MPa; Mosbeux et al., 2020), could widen preexisting basal crevasses 
and ultimately lead to calving, as has been observed at outlet glaciers in Greenland (e.g., James et al., 2014). 
The environmental conditions, near-surface ocean warming and surface waves, that drive increases in 
bench buoyancy only occur in austral summer. We speculate that projected changes in summer sea ice 
(e.g., Bracegirdle et al., 2008; Lenaerts et al., 2016; Massom & Stammerjohn, 2010) could alter both surface 
warming (Porter et al., 2019) and wave action (Horvat et al., 2020) necessary for bench formation, which 
in turn would change the relative contribution of R-M-style calving to ice-shelf mass loss. We note, how-
ever, that conditions favorable for increased bench formation may also drive mode-3 basal melting (Jacobs 
et al., 1992; Stewart et al., 2019), such that the interplay of both processes is likely to determine the total rate 
of mass loss along the ice front.

5.  Summary and Outlook
We have used surface elevation data from NASA’s ICESat-2 laser altimeter to map rampart-moat (R-M) 
structures along the front of RIS. These structures are driven by ice flexure due to excess buoyancy from 
submerged benches of ice that form along the front as warm near-surface water and surface waves create 
notches in the ice face near the waterline, leading to collapse of the overhanging aerial ice front. We pro-
pose that bending stresses acting on preexisting crevasses can lead to calving of small-scale sliver icebergs, 
contributing to net mass loss from Antarctic ice shelves. Climate-forced changes in this mechanism of mass 
loss would alter the distribution of freshwater input to the upper ocean in the Ross Sea, and may influence 
the rate of grounded-ice loss in the Ross Sea sector if the changes occur in regions of high buttressing, such 
as the area east of Ross Island (Fürst et al., 2016; Reese et al., 2018). Ice-shelf fronts, which advance at 
rates of order 1 km a−1, also provide a relatively stationary environment for repeat observations of the R-M 
formation process, which appears to be critical to the destruction of large drifting icebergs, affecting the 
distribution of glacial meltwater input into the Southern Ocean (England et al., 2020).

Although we focused here on the RIS front, R-M structures exist on other large Antarctic ice shelves, such 
as the Filchner-Ronne and Amery, where summer environmental conditions are conducive to bench devel-
opment. Ultimately, improved understanding and quantification of R-M-driven calving will involve a com-
bination of new observations of subsurface ice-front shape (Fried et al., 2015; Orheim, 1987) and time-var-
ying upper-ocean temperature profiles, additional high-resolution elevation and ice-thickness data from 
the ongoing ICESat-2 mission and CryoSat-2 (Wuite et al., 2019), and observation-based improvements to 
ice-shelf models that incorporate the reduced yield stress associated with preexisting crevasses.

As the ICESat-2 mission progresses, its data will provide insight into the temporal evolution of R-M struc-
tures, including the timescale of development, potential calving, and redevelopment, across all ice shelves. 
This information will be critical for quantifying the relative contribution of the R-M mechanism to the 
overall calving flux and for predicting how this contribution might change in a warming Southern Ocean.

Data Availability Statement
ICESat-2 Version 3 ATL03 (https://nsidc.org/data/atl03) and ATL06 (https://nsidc.org/data/atl06) data are 
available at NSIDC. The Python code for data download and the MATLAB code for front and R-M struc-
ture detection are available via Zenodo: http://doi.org/10.5281/zenodo.4697517. The authors acknowledge 
the use of imagery from the NASA Worldview application (https://worldview.earthdata.nasa.gov), part of 
the NASA Earth Observing System Data and Information System, and elevation data from the Reference 
Elevation Model of Antarctica (http://data.pgc.umn.edu/elev/dem/setsm/REMA/mosaic/). Sea ice concen-
tration data are from the NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration, 
Version 3 (https://nsidc.org/data/g02202/versions/3). The authors obtained ERA5 monthly averaged re-
analysis outputs of SST, for the years 1999–2019, from modified Copernicus Climate Change Service in-
formation (2020; https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-month-
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ly-means); neither the European Commission nor ECMWF is responsible for this use of the Copernicus 
information and component data.
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